Что такое геоид и какой формы Земля на самом деле? Геоид - это что такое? Форма и размеры земли что такое геоид

Около Александрийской библиотеки во время положения Солнца над Сиеной в зените, сумел измерить длину земного меридиана и вычислить радиус Земли. То, что форма Земли должна отличаться от шара впервые показал Ньютон.

Известно, что планета сформировалась под действием двух сил — силы взаимного притяжения её частиц и центробежной силы, возникающей из-за вращения планеты вокруг своей оси. Сила тяжести представляет собой равнодействующую этих двух сил. Степень сжатия зависит от угловой скорости вращения: чем быстрее вращается тело, тем больше оно сплющивается у полюсов.

Рис. 2.1. Вращение Земли

Понятие фигуры Земли может трактоваться по-разному в зависимости от того, какие требования предъявляются к точности решения тех или иных задач. В одних случаях Землю можно принять за плоскость, в других - за шар, в третьих - за двухосный эллипсоид вращения с малым полярным сжатием, в четвертых - трехосный эллипсоид.




Рис. 2.2. Физическая поверхность Земли (вид из космоса)

Суша составляет приблизительно одну треть от всей поверхности Земли. Она возвышается над уровнем моря в среднем на 900 - 950 м. По сравнению с радиусом Земли (R = 6371 км) это весьма малая величина. Поскольку большую часть поверхности Земли занимают моря и океаны, то за форму Земли можно принять уровенную поверхность, совпадающую с невозмущенной поверхностью Мирового океана и мысленно продолженную под материками.По предложению немецкого ученого Листинга данную фигуру назвали геоидом .
Фигура, ограниченная уровенной поверхностью, совпадающей с поверхностью воды Мирового океана в спокойном состоянии, мысленно продолженная под материками, называется геоидом.
Под Мировым океаном понимают поверхности морей и океанов, связанные между собой.
Поверхность геоида во всех точках перпендикулярна отвесной линии.
Фигура геоида зависит от распределения масс и плотностей в теле Земли. Она не имеет точного математического выражения и является практически неопределимой, в связи с чем в геодезических измерениях вместо геоида используется его приближение - квазигеоид. Квазигеоид , в отличие от геоида, однозначно определяется по результатам измерений, совпадает с геоидом на территории Мирового океана и очень близок к геоиду на суше, отклоняясь лишь на несколько сантиметров на равнинной местности и не более чем на 2 метра в высоких горах.
Для изучения фигуры нашей планеты сначала определяют форму и размеры некоторой модели, поверхность которой является сравнительно хорошо изученной в геометрическом отношении и наиболее полно характеризует форму и размеры Земли. Затем, принимая эту условную фигуру за исходную, определяют относительно нее высоты точек. Для решения многих задач геодезии за модель Земли принят эллипсоид вращения (сфероид).

Направление отвесной линии и направление нормали (перпендикуляра) к поверхности эллипсоида в точках земной поверхности не совпадают и образуют угол ε , называемый уклонением отвесной линии . Данное явление связано с тем, что плотность масс в теле Земли неодинакова и отвесная линия отклоняется в сторону более плотных масс. В среднем его величина составляет 3 - 4", а в местах аномалий достигает десятков секунд. Реальный уровень моря в разных регионах Земли отклонятся более чем на 100 метров от идеального эллипсоида.

Рис. 2.3. Соотношение поверхностей геоида и земного эллипсоида.
1) мировой океан; 2) земной эллипсоид; 3) отвесные линии; 4) тело Земли; 5) геоид

Для определения размеров земного эллипсоида на суше проводились специальные градусные измерения (определялось расстояние по дуге меридиана в 1º). На протяжении полутора веков (с 1800 по 1940 гг.) были получены различные размеры земного эллипсоида (эллипсоиды Деламбера (д"Аламбера), Бесселя, Хейфорда, Кларка, Красовского и др.).
Эллипсоид Деламбера имеет только историческое значение как основа для установления метрической системы мер (на поверхности эллипсоида Деламбера расстояние в 1 метр равно одной десятимиллионной расстояния от полюса до экватора).
Эллипсоид Кларка используется в США, странах Латинской Америки, Центральной Америки и других странах. В Европе используется эллипсоид Хейфорда. Он же был рекомендован в качестве международного, однако параметры указанного эллипсоида получены по измерениям, выполненным только на территории США, и, кроме того, содержат большие ошибки.
До 1942 г. в нашей стране применялся эллипсоид Бесселя. В 1946 г. размеры земного эллипсоида Красовского были утверждены для геодезических работ на территории Советского Союза и действуют до настоящего времени на территории Украины.
Эллипсоид, который используется данным государством, либо обособленной группой государств, для производства геодезических работ и проектирования на его поверхность точек физической поверхности Земли, называют референц-эллипсоидом. Референц-эллипсоид служит вспомогательной математической поверхностью, к которой приводят результаты геодезических измерений на земной поверхности. Наиболее удачная математическая модель Земли для нашей территории в виде референц-эллипсоида была предложена проф. Ф. Н. Красовским. На этом эллипсоиде основана геодезическая система координат Пулково-1942 (СК-42), которая использовалась в Украине для создания топографических карт с 1946 по 2007 год.

Размеры земного эллипсоида по Красовскому


Малая полуось (полярный радиус)

Большая полуось (экваториальный радиус)

Средний радиус Земли, принимаемой за шар

Полярное сжатие (отношение разницы полуосей к большой полуоси)

Площадь поверхности Земли

510083058 км²

Длина меридиана

Длина экватора

Длина дуги 1° по меридиану на широте 0°

Длина дуги 1° по меридиану на широте 45°

Длина дуги 1° по меридиану на широте 90°

При вводе Пулковской системы координат и Балтийской системы высот Совет Министров СССР возложил на Генеральный Штаб вооруженных сил СССР и Главное управление геодезии и картографии при Совете Министров СССР перевычисление в единую систему координат и высот триангуляционной и нивелирной сети, выполненной до 1946 года, и обязал их закончить эту работу в 5-летний срок. Контроль за переизданием топографических карт был возложен на Генеральный Штаб вооруженных сил СССР, а морских карт на Главный Штаб военно-морских сил.
1 января 2007 года на территории Украины введена УСК-2000 - Украинская система координат взамен СК-42. Практической ценностью новой системы координат является возможность эффективного использования глобальных навигационных спутниковых систем в топографо-геодезическом производстве, которые имеют целый ряд преимуществ в сравнении с традиционными методами.
Сведений о том, что в Украине произведено перевычисление координат СК-42 в УСК-2000 и изданы новые топографические карты автор этого учебного пособия не имеет. На учебных топографических картах, изданных в 2010 году Государственным научно-производственным предприятием «Картография», в левом верхнем углу по-прежнему осталась надпись «Система координат 1942 г.».
Система координат 1963 года (СК-63) являлась производной от предыдущей государственной системы координат 1942 года и имела определенные параметры связи с ней. Для обеспечения секретности в СК-63 были искусственно искажены реальные данные. С появлением мощной вычислительной техники для высокоточного определения параметров связи между различными координатными системами эта система координат утратила свой смысл в начале 80-х годов. Следует заметить, что СК-63 была отменена решением Совета Министров СССР в марте 1989 года. Но впоследствии, учитывая большие объемы накопленных геопространственных данных и картографических материалов (включая результаты выполнения землеустроительных работ времен СССР), срок ее использования был продлен до тех пор, пока все данные не будут переведены в действующую государственную систему координат.
Для спутниковой навигации используется трёхмерная система координат WGS 84 (англ. World Geodetic System 1984). В отличие от локальных систем, является единой системой для всей планеты. WGS 84 определяет координаты относительно центра масс Земли, погрешность составляет менее 2 см. В WGS 84 нулевым меридианом считается IERS Reference Meridian. Он расположен в 5,31″ к востоку от Гринвичского меридиана. За основу взят сфероид с большим радиусом - 6 378 137 м (экваториальный) и меньшим - 6 356 752,3142 м (полярный). Отличается от геоида менее чем на 200 м.
Особенности строения фигуры Земли полностью учитываются при математической обработке высокоточных геодезических измерений и создании государственных геодезических опорных сетей. Ввиду малости сжатия (отношение разности большой, экваториальной полуоси (а ) земного эллипсоида и малой полярной полуоси (b ) к большой полуоси [a - b ]/b ) ≈ 1:300) при решении многих задач за фигуру Земли с достаточной для практических целей точностью можно принять сферу , равновеликую по объему земному эллипсоиду . Радиус такой сферы для эллипсоида Красовского R = 6371,11 км.

2.2. ОСНОВНЫЕ ЛИНИИ И ПЛОСКОСТИ ЗЕМНОГО ЭЛЛИПСОИДА

При определении положения точек на поверхности Земли и на поверхности земного эллипсоида пользуются некоторыми линиями и плоскостями.
Известно, что точки пересечения оси вращения земного эллипсоида с его поверхностью являются полюсами, один из которых называется Северным Рс , а другой - Южным Рю (рис. 2.4).


Рис. 2.4. Основные линии и плоскости земного эллипсоида

Сечения земного эллипсоида плоскостями, перпендикулярными к малой его оси, образуют след в виде окружностей, которые называются параллелями. Параллели имеют различные по величине радиусы. Чем ближе расположены параллели к центру эллипсоида, тем больше их радиусы. Параллель с наибольшим радиусом, равным большой полуоси земного эллипсоида, называется экватором . Плоскость экватора проходит через центр земного эллипсоида и делит его на две равные части: Северное и Южное полушария.
Кривизна поверхности эллипсоида является важной характеристикой. Она характеризуется радиусами кривизны меридианного сечения и сечения первого вертикала, которые называются главными сечениями
Сечения поверхности земного эллипсоида плоскостями, проходящими через его малую ось (ось вращения), образуют след в виде эллипсов, которые называются меридианными сечениями .
На рис. 2.4 прямая СО" , перпендикулярная к касательной плоскости КК" в точке ее касания С , называется нормалью к поверхности эллипсоида в этой точке. Каждая нормаль к поверхности эллипсоида всегда лежит в плоскости меридиана, а следовательно, пересекает ось вращения эллипсоида. Нормали к точкам, лежащим на одной параллели, пересекают малую ось (ось вращения) в одной и той же точке. Нормали к точкам, расположенным на разных параллелях, пересекаются с осью вращения в различных точках. Нормаль к точке, расположенной на экваторе, лежит в плоскости экватора, а нормаль в точке полюса совпадает с осью вращения эллипсоида.
Плоскость, проходящая через нормаль, называется нормальной плоскостью , а след от сечения этой плоскостью эллипсоида - нормальным сечением . Через любую точку на поверхности эллипсоида можно провести бесчисленное множество нормальных сечений. Меридиан и экватор являются частными случаями нормальных сечений в данной точке эллипсоида.
Нормальная плоскость, перпендикулярная к плоскости меридиана в данной точке С , называется плоскостью первого вертикала , а след, по которой она пересекает поверхность эллипсоида, - сечением первого вертикала (рис. 2.4).
Взаимное положение меридиана и любого нормального сечения, проходящего через точку С (рис. 2.5) на данном меридиане, определяется на поверхности эллипсоида углом А , образованным меридианом данной точки С и нормальным сечением.


Рис. 2.5. Нормальное сечение

Этот угол называется геодезическим азимутом нормального сечения. Он отсчитывается от северного направления меридиана по ходу часовой стрелки от 0 до 360°.
Если принять Землю за шар, то нормаль к любой точке поверхности шара пройдет через центр шара, а любая нормальная плоскость образует на поверхности шара след в виде окружности, которая называется большим кругом.

2.3. МЕТОДЫ ОПРЕДЕЛЕНИЯ ФИГУРЫ И РАЗМЕРОВ ЗЕМЛИ

При определении фигуры и размеров Земли использовались следующие методы:

Астрономо - геодезический метод

Определение фигуры и размеров Земли основано на использовании градусных измерений, суть которых сводится к определению линейной величины одного градуса дуги меридиана и параллели на разных широтах. Однако непосредственные линейные измерения значительной протяженности на земной поверхности затруднены, ее неровности существенно снижают точность работ.
Метод триангуляции. Высокая точность измерения значительных по протяженности расстояний обеспечивается применением метода триангуляции, разработанного в XVII в. голландским ученым В. Снеллиусом (1580 - 1626).
Триангуляционные работы для определения дуг меридианов и параллелей проводились учеными разных стран. Еще в XVIII в. было установлено, что один градус дуги меридиана у полюса длиннее, чем у экватора. Такие параметры характерны для эллипсоида, сжатого у полюсов. Этим подтверждалась гипотеза И. Ньютона о том, что Земля в соответствии с законами гидродинамики должна иметь форму эллипсоида вращения, сплюснутого у полюсов.

Геофизический (гравиметрический ) метод

Он основан на измерении величин, характеризующих земное поле силы тяжести, и их распределении на поверхности Земли. Преимущество этого метода в том, что его можно применять на акваториях морей и океанов, т. е. там, где возможности астрономо-геодезического способа ограничены. Данные измерений потенциала силы тяжести, выполненные на поверхности планеты, позволяют вычислить сжатие Земли с большей точностью, чем астрономо-геодезическим методом.
Начало гравиметрическим наблюдениям было положено в 1743 г. французским ученым А. Клеро (1713 - 1765). Он предположил, что поверхность Земли имеет вид сфероида, т. е. фигуры, которую приняла бы Земля, находясь в состоянии гидростатического равновесия под влиянием только сил взаимного тяготения ее частиц и центробежной силы вращения около неизменной оси. А. Клеро предположил также, что тело Земли состоит из сфероидальных слоев с общим центром, плотность которых возрастает к центру.


Космический метод

Развитие космического метода и изучения Земли связано с освоением космического пространства, которое началось с момента запуска советского искусственного спутника Земли (ИСЗ) в октябре 1957 г. Перед геодезией были поставлены новые задачи, связанные с бурным развитием космонавтики. В их числе - наблюдение за ИСЗ на орбите и определение их пространственных координат в заданный момент времени. Выявленные отклонения реальных орбит ИСЗ от предвычисленных, вызванные неравномерным распределением масс в земной коре, позволяют уточнить представление о гравитационном поле Земли и в конечном результате о ее фигуре.

Вопросы и задания для самоконтроля

    Для каких целей используются данные о форме и размерах Земли?

    По каким признакам в древности определили, что Земля имеет шарообразную форму?

    Какую фигуру называют геоидом?

    Какую фигуру называют эллипсоидом?

    Какую фигуру называют референц-эллипсоидом?

    Каковы элементы и размеры эллипсоида Красовского?

    Назовите основные линии и плоскости земного эллипсоида.

    Какие методы используются для определения фигуры и размеров Земли?

    Дайте краткую характеристику каждому методу.

Какой формы земля, гипотезы прошлого и теории настоящего расскажут о форме нашей планеты.

Немного истории

Наши предки задавались вопросами, что представляет собой окружающий мир: что есть небо, земная твердь, вода вокруг нее. Необычные теории и предположения высказывали мыслители.

  • В Греции считали, что земля – плоскость, ее окружают океанические воды без краев. На колеснице Аполлон катится по небу и освещает его. Звезды по утрам тонут в водах океана, и вновь рождаются ночью.
  • Земля стоит на четырех слонах, которые покоятся на гигантской черепахе. Она же плавает по молочному морю. А его обвивает змея исполинских размеров. Во все это верили индийцы.
  • Земля имеет форму чемодана. Встретимся за углом! – так шутили в дети в начальной школе. Китайцы считали так всерьез: земля представляет собой прямоугольник. Полагается он на колоннах, над этим сооружением – безмерное небо. Пролетающий дракон погнул колонну. Теперь солнце ходит не ровно, а по окружности: поднимается на востоке, и прячется на западе.

  • Земля квадратная, на ней пять деревьев (в центре – зеленое, самое главное, красное – на востоке, белого цвета – не севере, черного – на западе, желтое – на юге.) Небо держится на деревьях, их цвет – цвет солнца в разное время дня. Такой веры придерживались представители древних майя.
  • Вселенная состоит из семи миров. Их соединяет величественное дерево. Оно и есть наша земля. На кроне дерева — остров Буян. Там обитают предки всех животных. Так понимали мир славяне древнего мира.
  • В Египте землю представляли так: внизу почивает Богиня почвы, вверху – небо, по которому величественно плывет Бог Солнца.

Все-таки она круглая?!

  • Пифагор – легендарный древнегреческий ученый, годы рождения примерно 586 до н.э. – 569 до н.э. Эллинский мудрец не оставил после себя трудов, обо всех его размышлениях мы можем знать по трудам его учеников и последователей. Пифагор много путешествовал и учился у мудрецов Египта, Персии, Финикии. Познания мира он базировал на научном подходе. Математик и ученый утверждал, что форма Земли – шар.

  • Его учитель, Анаксимандр Милетский, занимался космологией. Автор научного труда “О природе”. Земля «из двух [плоских] поверхностей по одной ходим мы, а другая ей противоположна». Земля пребывает в центре мироздания, ни на что не опирается, ее окружают кольца из огня. Планету окружают другие, находящиеся на разных расстояниях.
  • Древнегреческий ученый Парменид (рожден примерно в 540 г. до н.э.)в своих трудах (до нас дошла частично поэма “О природе”) тоже придерживался этого взгляда.
  • Аристотель (384 г. до н.э.), ученик Платона, воспитатель А. Македонского, доказал, что форма земли – шар. Он ссылался на то, что при лунных затмениях тень Земли – круглая. Также он доказал и то, что Луна имеет форму шара.
  • Галилей Галилео, математик, физик, астроном и философ, впервые использовал телескоп для наблюдений за небом. Был подвержен гонениям католической церкви: возмутительная гипотеза, что не солнце движется вокруг земли, а земля — вокруг солнца , вызвала негодование.

“Утверждать, что Солнце стоит неподвижно в центре мира - мнение нелепое, ложное с философской точки зрения и формально еретическое, так как оно прямо противоречит Священному Писанию.
Утверждать, что Земля не находится в центре мира, что она не остаётся неподвижной и обладает даже суточным вращением, есть мнение столь же нелепое, ложное с философской и греховное с религиозной точки зрения.”

Ученый был обвинен в ереси и подвержен гонениям. В 1972 году церковь отменила приговор суда над Галилео. В 1992 году Папа Иоанн Павел ll, как представитель Римско-католической церкви признал и приговор, и обвинение ошибкой.

Теперь

Исаак Ньютон, физик, механик, математик и астроном, выдвинул теорию, что форма Земли не шар, а эллипсоид. Для доказательства совей мысли он предложил провести мысленный эксперимент. Необходимо прокопать две шахты к центру Земли: от полюса и от экватора. Шахты заливают водой. Длина шахт одинакова, если исходить из того, что форма – шар. В противовес этому в шахте экватора на воду действует центробежная сила, а на полярную не действует. Для того, чтобы в двух шахтах было равновесие, шахта экватора должна быть длиннее.

В идеальном представлении можно считать, что Земля имеет форму шара, а радиус составляет 6 371, 3 километра. Эти параметры подходят для решения тех задач, точность которых не выше 0,5 процента. На самом деле планета не имеет ровную форму шара. Из-за своего вращения со стороны полюсов она приплюснута. Также различна высота материков, на поверхности впадины и горы. Приливы деформируют форму Земли: они зависят от движения Луны. Это уже не шар, когда центр находится в равном расстоянии от любой точки на поверхности. Здесь вводится понятие геоид. С греческого языка это переводят как “нечто, подобное Земле”. Это эллипсоид вращения, приплюснутый с полюсов. Его поверхность в некоторых местах выступает или прогибается. Геоид напоминает по форме подгнивающее яблоко: поверхность неровная, сама фигура слегка вытянутая.

В космонавтике и геодезии, где точность расчетов максимально важна, используют геоид или эллипсоид. С первым связывают систему астрономических координат, со вторым – геодезических.

Но и геоидом в полной мере Землю не считают. В случае, если бы поверхность планеты вся покрывалась океанами, и они бы не изменялись из-за приливов, тогда форма была бы геоидом. В реальности все иначе, поэтому для более точного определения вывели понятие: референц-эллипсоид.

В науке и при расчётах используют разные земные эллипсоиды и системы координат привязанные к ним.

Взгляды на природу вещей должны непрерывно

совершенствоваться путем познания новых фактов и их научного обобщения.

Август Кекуле


В том, что земной шар имеет форму геоида — некое подобие груши, вытянутой к Северному полюсу , виноват все тот же эфирный ветер, обдувающий его с севера.

Само понятие «геоид» введено в 1873 г. немецким физиком и математиком Иоганном Листингом.

Под этим понятием, означающим «вид Земли» (греч)., подразумевается фигура, которую образовала бы поверхность Мирового океана и сообщающихся с ним морей при некотором среднем уровне воды, свободной от возмущений приливами, течениями, разностями атмосферного давления и т. п.



Картинка отсюда - http://racechrono.ru/obschee-zemlevedenie/5084-figura-i-razmer-zemli.html

Поверхность геоида является одной из уровневых поверхностей потенциала силы тяжести.

От геоида отсчитываются нивелирные высоты. Когда говорят, что высота над уровнем моря такая-то, то это и есть высота от поверхности геоида в данной точке земного шара , хотя именно в этом месте никакого моря нет, а оно, это море, находится от этого места за несколько тысяч километров.

Понятие геоида неоднократно уточнялось.


Советский геофизик, гравиметрист, геодезист и астроном М. С. Молоденский создал теорию определения фигуры и гравитационного поля Земли по выполненным на ее поверхности измерениям, для чего он разработал первый в СССР пружинный гравиметр — прибор для измерения силы тяжести .

Он же предложил использование «квазигеоида» (почти геоида), определяемого по значениям потенциала силы тяжести на земной поверхности. Отступления от геоида невелики, не более З м., но геодезия — наука точная , для нее и такие отступления существенны.

Существует еще эллипсоид Ф. Н. Красовского, который аппроксимирует геоид эллипсоидом вращения; это применяется в геодезических и картографических работах взамен ранее применявшегося для этих целей эллипсоида Бесселя, размеры которого оказались ошибочными.

Так что с формой Земли, как и с любым предметом, все оказалось совсем не просто. Хотя Земля, как выяснилось, не плоскость, установленная на трех слонах, но и не совсем шар . А кроме того возникла серия вопросов:

Почему Земля вообще имеет этакую форму груши ?

Почему точно на севере находится океан, а точно на юге материк, покрытый льдом, да еще на нем пониженная температура?

Почему материки сосредоточены в основном в Северном полушарии?


А есть еще и такое понятие:

Почему в южных широтах существуют «ревущие сороковые»? Можно задать и еще много других вопросов, что, как известно, делать легче, чем отвечать на них. Но давайте попробуем ответить хотя бы на эти. Тем более, что и на эти вопросы в их совокупности ответить пока не сумел никто. А мы попробуем.

Земля вместе с Солнцем сейчас и уже 3-4 миллиарда лет находится в такой области спирального рукава Галактики, в которой она обдувается эфирным потоком с севера .

Апекс эфирного ветра располагается, как установлено Д. К. Миллером еще в 1927 г., где-то в районе звезды Дзета созвездия Дракона (прямое восхождение 262 град, склонение 65 град).

Это данные Миллера, возможно сюда вкралась погрешность, связанная с не учетом им влияния местного рельефа, в частности, горного хребта, в составе которого находится гора Маунт Вилсон, на которой он проводил измерения. Ось Земли, таким образом, несколько наклонена к направлению эфирного ветра.


Огибая Землю, эфирный поток создает на ней различные области давления .

В Северном полушарии и частично в южном — от 70 град с. ш. до 20 град ю. ш. давление эфира понижено за счет градиента скорости потока, огибающего Землю . Сюда стремятся материки, поэтому они и сосредоточены в Северном полушарии.

Область Северного полюса и его ближайших окрестностей - область повышенного давления эфира, это область торможения набегающего эфирного потока: здесь поток эфира бьет прямо в «макушку» земного шара . Поэтому сюда материки не заходят, здесь образовался Северный ледовитый океан.

По законам пограничного слоя после 110 град, считая от точки, в которую под прямым углом бьет поток эфира, то есть несколько ниже экватора этот поток начинает отрываться от поверхности.

Между этим оторвавшимся потоком и поверхностью Земли в районе сороковых-пятидесятых южных широт образуется присоединенный тороидальный вихрь эфира. Этот вихрь захватывает воздушные массы, которые вызывают волнение моря, что и дало этим широтам название «ревущих сороковых».

Потоки эфира, тормозясь об атмосферу, вращающуюся вместе с Землей, испытывают кориолисово ускорение, благодаря чему появляется западная составляющая потока, что и вызывает в этом районе ветры соответствующего направления.

Тороидальный воздушный вихрь отбирает воду у океана и переносит ее через верхние холодные слои атмосферы в приполярные южные области, где и сбрасывает, образуя ледовый континент Антарктиды.

Наличие градиентных воздушных течений способствует понижению температуры воздуха во всем приполярном южном районе. Этим объясняется понижение температуры в южных полярных областях по сравнению с северными, где таких течений нет, поскольку нет присоединенного эфирного вихря.


Кроме того, воздух, благодаря тороидальным потокам, спускается вниз из верхних слоев атмосферы, где он был охлажден, чего тоже на севере нет.

Картинка отсюда - http://fai.org.ru/forum/topic/30864-toroidalnaya-planeta-20/

В результате обдува эфирным ветром поверхности Земли давление эфира в северном полушарии меньше, чем в южном. Это не только заставило континенты сдвинуться в северном направлении, но и привело к деформации всего земного шара: его форма стала «геоидом», неким подобием груши, вытянутой в направлении севера.

Таким образом, с учетом наличия эфирного ветра впервые появилась возможность с единых позиций рассмотреть не только структуру Галактики и Солнечной системы, но и нашей родной Земли.

Необходимо отметить, что подобные же явления в том или ином виде должны существовать на всех планетах Солнечной системы. Это могут проверить планетологи. Нужно лишь не забывать при этом, что величина пограничного слоя потоков эфира, обдувающих планету, существенным образом зависит от наличия на ней атмосферы.

В. А. Ацюковский.

Эфиродинамические гипотезы


Мои шаблоны снова разрушились:) А ваши?

Наша планета является одной из 9, которые вращаются вокруг Солнца. Еще в глубокой древности появились первые представления о том, каковы форма и размеры Земли.

Как менялись представления о форме Земли?

Античные мыслители (Аристотель - 3 в. до н. э., Пифагор - 5 в. до н. э. и др.) еще много веков назад высказывали мысль о том, что наша планета имеет шарообразную форму. Аристотель (на фото ниже), в частности, учил вслед за Евдоксом, что являющаяся центром Вселенной Земля шарообразна. Доказательство этого он видел в характере, который имеют лунные затмения. При них отбрасываемая нашей планетой на Луну тень имеет округлую форму по краям, что возможно лишь при условии шарообразности.

Проведенные в последующие столетия астрономические и геодезические исследования дали нам возможность судить, каковы в действительности форма и размеры Земли. Сегодня о том, что она круглая, знают от мала до велика. А ведь были времена в истории, когда считалось, что планета Земля плоская. Сегодня благодаря прогрессу науки мы уже не сомневаемся в том, что она именно круглая, а не плоская. Неоспоримое доказательство этого - космические фотоснимки. Шарообразность нашей планеты приводит к тому, что земная поверхность нагревается неравномерно.

А ведь на самом деле форма Земли не совсем такая, как мы привыкли думать. Этот факт известен ученым, и он используется в настоящее время для решения задач в области спутниковой навигации, геодезии, космонавтики, астрофизики и других смежных науках. Впервые мысль о том, какова в действительности форма Земли, высказал Ньютон на рубеже 17-18-го вв. Он теоретически обосновал предположение о том, что наша планета под воздействием на нее силы тяжести должна быть сжата в направлении оси вращения. А это значит, что форма Земли представляет собой либо сфероид, либо эллипсоид вращения. От угловой скорости вращения зависит степень сжатия. То есть чем тело вращается быстрее, тем оно сплющивается больше у полюсов. Этот ученый исходил из принципа всемирного тяготения, а также из предположения однородной жидкой массы. Он допускал, что Земля является сжатым эллипсоидом, и определял, в зависимости от скорости вращения, размеры сжатия. Через некоторое время Маклорен доказал, что если наша планета является сжатым у полюсов эллипсоидом, то равновесие покрывающих Землю океанов действительно обеспечено.

Можно ли считать, что Земля круглая?

Если планета Земля будет рассматриваться издалека, она будет казаться практически идеально круглой. Наблюдатель, которому большая точность измерений не важна, может вполне считать ее таковой. Средний радиус Земли в этом случае составляет 6371,3 км. Но если мы, приняв за идеальный шар форму нашей планеты, станем делать точные измерения различных координат точек на поверхности, у нас ничего не получится. Дело в том, что наша планета - это не идеально круглый шар.

Различные способы описания формы Земли

Форма планеты Земля может быть описана двумя основными, а также несколькими производными способами. Она может быть принята в большинстве случаев либо за геоид, либо за эллипсоид. Интересно, что математически легко описывается второй вариант, а вот первый принципиально никак не описывается, поскольку для определения точной формы геоида (а следовательно, и Земли) осуществляются практические измерения гравитации в различных точках поверхности нашей планеты.

Эллипсоид вращения

Все понятно с эллипсоидом вращения: фигура эта напоминает шар, который снизу и сверху приплюснут. То, что форма Земли - эллипсоид, вполне объяснимо: центробежные силы возникают из-за вращения нашей планеты на экваторе, тогда как их нет на полюсах. В результате вращения, а также центробежных сил Земля "располнела": диаметр планеты по экватору больше примерно на 50 км, чем полярный.

Особенности фигуры под названием "геоид"

Крайне сложная фигура - геоид. Она существует лишь теоретически, однако на практике ее нельзя ни пощупать, ни увидеть. Можно представить себе геоид в виде поверхности, сила земного притяжения в каждой точке которой направлена строго вертикально. Если бы наша планета была правильным шаром, заполненным равномерно каким-либо веществом, то отвес в любой ее точке смотрел бы в центр шара. Но ситуация осложняется тем, что неоднородной является плотность нашей планеты. В одних местах имеются тяжелые горные породы, в других пустоты, горы и впадины разбросаны по всей поверхности, так же неравномерно распределены равнины и моря. Все это меняет в каждой конкретной точке гравитационный потенциал. В том, что форма земного шара - геоид, виноват также эфирный ветер, который обдувает нашу планету с севера.

Кто изучал геоиды?

Отметим, что само понятие "геоид" было введено Иоганном Листингом (на фото ниже), физиком и математиком, в 1873 году.

Под ним, означающим в переводе с греческого "вид Земли", подразумевалась фигура, образованная поверхностью Мирового океана, а также морей, сообщающихся с ним, при среднем уровне воды, отсутствии возмущений от приливов, течений, а также разностей атмосферного давления и т. п. Когда говорят о том, что над уровнем моря такая-то высота, это означает высоту от поверхности геоида в этой точке земного шара, несмотря на то что в этом месте нет никакого моря, а оно находится за несколько тысяч километров от него.

Неоднократно уточнялось впоследствии понятие геоида. Так, советский ученый М. С. Молоденский создал свою теорию определения гравитационного поля и фигуры Земли по измерениям, выполненным на ее поверхности. Для этого он разработал особый прибор, измеряющий силу тяжести - пружинный гравиметр. Именно он предложил также использование квазигеоида, который определяется по значениям, принимаемым потенциалом силы тяжести на поверхности Земли.

Подробнее о геоиде

Если гравитацию измерить в 100 км от гор, то отвес (то есть грузик на нитке) станет отклоняться в их сторону. Такое отклонение от вертикали нашему глазу незаметно, однако легко обнаруживается приборами. Подобная картина наблюдается везде: отклонения отвеса где-то больше, где-то они меньше. А мы помним о том, что всегда перпендикулярной отвесу является поверхность геоида. Отсюда становится ясно, что геоид - весьма сложная фигура. Для того чтобы лучшее его представить, можно сделать следующее: вылепить шар из глины, после чего с двух сторон его сжать для образования приплюснутости, затем сделать пальцами на получившемся эллипсоиде бугры и вмятины. Такой сплюснутый помятый шарик будет довольно реалистично показывать форму нашей планеты.

Для чего нужно знать точную форму Земли?

Для чего же нужно знать так точно ее форму? Чем не удовлетворяет ученых шарообразная форма Земли? Следует ли усложнять картину геоидом и эллипсоидом вращения? Да, насущная необходимость в этом есть: близкие к геоиду фигуры помогают создавать координатные сетки, являющиеся наиболее точными. Ни астрономические исследования, ни геодезические изыскания, ни различные системы спутниковой навигации (ГЛОНАСС, GPS) не могут существовать и проводиться без определения довольно точной формы нашей планеты.

Различные системы координат

В мире в настоящее время действует несколько трехмерных и двухмерных систем координат с мировым значением, а также несколько десятков локальных. Своя форма Земли принята в каждой из них. Это приводит к тому, что координаты, которые были определены разными системами, несколько отличаются. Интересно, что, для того чтобы вычислить их у точек, находящихся на территории одной страны, удобнее всего будет принять форму Земли за референц-эллипсоид. Это установлено сейчас даже на высшем законодательном уровне.

Эллипсоид Красовского

Если говорить о странах СНГ или России, то на территории этих государств форма нашей планеты описывается так называемым эллипсоидом Красовского. Он был определен еще в 1940 году. Отечественные (ПЗ-90, СК-63, СК-42) и зарубежные (Afgooye, Hanoi 1972) системы координат были созданы на основании этой фигуры. Они и по сей день используются в практических и научных целях. Интересно, что ГЛОНАСС опирается на систему ПЗ-90, которая превосходит по своей точности принятую как основа в GPS аналогичную систему WGS84.

Заключение

Подводя итог, скажем еще раз, что форма нашей планеты отличается от шара. Земля приближается по своей форме к эллипсоиду вращения. Как мы уже отметили, вовсе не праздным является этот вопрос. Точное определение того, какую Земля имеет форму, дает мощный инструмент ученым для вычисления координат небесных и земных тел. А это очень важно для космической и морской навигации, при проведении строительных, геодезических работ, а также во многих других областях человеческой деятельности.

Вращение Земли вокруг своей оси создает центробежную силу: чем ближе к экватору, тем сильнее тянет материал нашей планеты «наружу».

За миллионы лет вращение Земли вокруг своей оси изменило ее форму - как у летящей капли воды. В 1924 г. Международный геодезический и геофизический союз принял решение, что точнее всего форму нашей планеты описывает симметричное геометрическое терло - международный эллипсоид.

Однако уже несколько лет известно, что истинная далека от эллипсоидальной. Об этом свидетельствуют данные спутников, давших более точные изображения ее поверхности.

Геоид земли — подобно капле воды

Поскольку выступающие участки мешают точно определить ее форму, ученые разработали теоретическую модель Земли, полностью покрытой водой, на основе среднего уровня моря. Поверхность такого тела, как и у воды, гладкая и однородная. Его назвали геоид земли.

Как ни странно, даже у такого абстрактного тела довольно сложная форма - с выступами и впадинами амплитудой до 100 м. Например, юг находится в стометровой яме, а Индонезия - на бугре высотой 75 м; посреди Тихого океана еще один выступ - на 100 м выше окружающей поверхности.

Ученые детально исследуют строение и состав ядра , в частности его гравитационную неоднородность, которая может проявляться снаружи. Известно, что и масса земной коры распределена неравномерно, это тоже сказывается на силе тяжести. Местами, например под океанами, мощность коры всего несколько километров, а под горными массивами она намного больше.

На одних участках горные породы тяжелые (обладают высокой плотностью), на других они гораздо легче. На суше сила тяжести выше средней. Именно здесь геоид земли образует впадины, а в зоне океанов - выступы.